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The Toda Chain is a nonlinear mass-spring chain which can in principle be integrated 
analytically by the action-angle theory of classical mechanics. We show that the transfor- 
mation from physical variables to action variables can be implemented very simply on a 
computer. We study the correspondence between action variables and the motions of the 
chain, and find the role of the action variables to be very similar to the role of normal-mode 
amplitudes in the harmonic chain. This similarity leads to a partly rigorous, partly heuristic 
normal-mode analysis for the Toda chain. New results are obtained when this normal-mode 
analysis is applied to certain perturbations of the Toda chain such as the Fermi-Pasta-Ulam 
chain or the Toda chain with a mass impurity. 

1. 1~TRoDucT10N 

The motion of a chain of unit masses connected by identical springs is governed by 
the equations 

4: = wq, - I) - Wq,), (1.1) 

where qn is the displacement of the nth mass, measured from a fixed reference 
equilibrium position, and 

ht=q,,+, -q4n, 

F(x) = -V’(x), 

where V(x) is the potential energy stored in a spring when its length is increased by 
an amount x. A complete analytical solution of (1.1) is known in only two cases. The 
most thoroughly studied case is the harmonic chain, with 

V(x) = ix*; 
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its solution is obtained by using the discrete Fourier transform to represent the 
general solution as a linear superposition of (sinusiodal) normal modes. The second 
case is the Toda chain, with 

V(x) = f [exp(-Px) - (1 -Px>l, 

which was invented around 1967 [ 11 and solved in 1973 [2,3] (independently in 
[41); its solution is obtained by using a complicated transformation from q, and q: to 
new variables. 

Our aim in this paper is to show how the complicated transformation used to solve 
the Toda chain can be converted into a practical computational tool for the analysis 
of the motion of the Toda chain. We argue that this transformation allows one to 
view the general solution of the Toda chain as a nonlinear superposition of normal 
modes, an approach which yields a surprisingly detailed understanding of the 
behavior of the Toda chain. For small-amplitude motions of the Toda chain these 
normal modes are approximately the sinusoidal traveling waves of the harmonic 
chain; for large-amplitude motion of the Toda chain, the normal modes tend to the 
“soliton” solutions of the infinite Toda chain. 

There are many reasons for studying the Toda chain. Most frequently it is used as 
a model of a one-dimensional solid. In this application the adjustable parameter “/I” 
in V allows the corresponding force law 

F(x) = $ [exp(-/Ix) - 11 (1.2) 

to approximate the harmonic force law as p + 0, or the hard-core collision as 
/3+ +co. It is known that (1.1) can be solved analytically (in terms of many-variable 
&functions) for all p E (0, co). In this respect the Toda chain is atypical; nowadays it 
is understood that “most” chains with nearest neighbor interactions have motions 
which exhibit at least some stochastic behavior. Still, the Toda chain is a convenient 
model for the study of the apparently ubiquitous soliton solutions of one-dimensional 
chains. For instance, it has recently been used as a test case for the analysis of shock 
waves in discrete nonlinear solids [5,6]. In computer experiments, the motions of 
chains with various force laws, including the Toda force law, were found to be 
qualitatively similar; it is therefore natural to study shocks in a discrete chain by 
using the integrable Toda chain as a model. Indeed, a phenomenological analysis has 
been carried out with the methods of the present paper [7,8]. 

Specific physical applications aside, the Toda chain occupies a unique position in 
the theory of nonlinear oscillators. It is one of the few systems which can be solved 
by the action-angle theory of classical dynamics. This venerable theory has not led to 
very many results, not only because integrable systems are hard to find, but also 
because the transformations required are difftcult to implement. We will show that 
the action variables for the Toda chain can be displayed graphically using but a few 
seconds of computer time. This makes it possible to correlate the action variables 
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with the qualitative features of the motion of the chain. As a result, we have thefirst 
example of a nonlinear system with many degrees of freedom for which it is possible, 
and computationally inexpensive, to obtain all of the constants of the motion, and to 
predict from these constants the qualitative features of the subsequent motion of the 
system. 

To see why this is useful, consider the harmonic chain whose action variables are 
related to the amplitudes of the various sinusoidal traveling-waves. The knowledge of 
these action variables (normal-mode amplitudes) allows one to describe qualitative 
features of the motion of the harmonic chain without integrating its equations of 
motion. Moreover, the analysis of the weak coupling of these action variables when 
the force law is only approximately harmonic has been a standard technique of 
physicists. We will show that these methods for the harmonic chain have analogs for 
the Toda chain. 

Let us now describe the steps we use to analyze the qualitative features of the 
motion of the Toda chain. From given initial conditions we compute the amplitudes 
(values of the action variables) of the various normal modes of the Toda chain; these 
amplitudes remain constant throughout the chain’s motion. Partly by theory, and 
partly by numerical experiment, we derive some rules which relate these initial 
amplitudes to the qualitative features of the subsequent motion of the chain. 

The rest of the paper is organized as follows. The solution of the harmonic chain is 
reviewed in Section 2. Sections 3 and 4 present a very brief outline of the 
action-angle theory of Hamiltonian dynamics; in particular, we show how to 
compute the normal-mode amplitudes for the Toda chain. We try to provide the 
reader with an operational understanding of the revelant theory; for some details we 
refer to the original theoretical literature. In Section 5 we use “practice problems” to 
derive the rules which relate the normal-mode amplitudes to the qualitative features of 
the corresponding motion of the Toda chain. In particular, we investigate certain 
motions that result from prescribed normal-mode amplitudes; in some cases this 
involves the numerical solution of an inverse spectral problem as described in 191. In 
Sections 6 and 7 we show how this nonlinear normal-mode analysis leads to new 
interpretations of the Fermi-Pasta-Ulam experiment [ 101, Zabusky’s lattice soliton 
experiment Ill], and the motion of the Toda chain when the value of one of its 
masses is changed. 

Some of the results of this paper were presented at conferences on “Inverse 
Spectral Transforms” (Rome, 1977) and on “Nonlinear Waves” (Kyoto, 1978) 1121. 

2. THE HARMONIC CHAIN 

In this paper we will typically be concerned with N-mass chains whose equations 
of motion are 

for n = 1, 2 ,..., N. (2.1) 
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The N-mass fixed-end chain is obtained by imposing the boundary conditions 

40 = 0 and qNtl =O, (2.2) 

while the N-mass periodic chain is obtained by imposing the boundary conditions 

40 = qN and qN+ I = 41’ (2.3) 

Without loss of generality we will consider only periodic chains; the N-mass tixed- 
end chain can be treated as a (2N + 2)-mass periodic chain if one extends q,,, p,, as 
odd functions, e.g., 

4 n+Ntl = -9, for n= 1,2,...,N+ 1 

and similarly for pn; as time evolves, q,, and pn remain odd functions. 
Let us now review those aspects of the N-mass periodic harmonic chain which will 

be relevant to our discusion of the Toda chain. The Hamiltonian for the harmonic 
chain is 

H(q, P) = 4 p’p - fqTSq. 

Here qT = (4, ,..., qN), pT = (P I ,..., pN), where T denotes transpose and 

s= 

1 
0 

-2 1 
. . . 

1 -2 
0 

1 - 

1 

1 
-2 I* 

Let 0 be an orthogonal matrix which diagonalizes S, 

OTSO = diag(-w:,..., -a$), 

oj = 2 sin(kj2), kj = 2nj/N. 

With p = OT$, q = OQ, we transform the Hamiltonian H to principal axes: 

H = f c ($; + oj’g;). (2.4 

This change of variables is canonical, and so the equations of motion are 

4; = jjj, fij = -wj’(fji, 

which are easily solved: 

Gj = cj sin(wjt + 6,“), @N=cNt+Bo N’ (2.5) 
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A solution for which the integration constants c, vanish except forj = m is commonly 
said to represent the mth normal mode. Because the eigenvalues --cc; of S are double 
(--CD; and -o& excepted), 0 is not unique, and the normal modes may appear as 
standing waves or as traveling waves. For comparison with the Toda chain, we 
choose the latter. 

The harmonic normal modes are 

4, Cm) = l<m<N-1, 
(2.6) 

here 

Observe that k,-j = 2n - kj while w,-~ = wj. Thus q”’ represents a left-running 
wave and qcNPJ) a right-running wave with wavenumber kj forj = l,..., [(N - 1)/2]. If 
the general solution of the harmonic chain is written as 

then the total energy is 

H= 5 JACm)12. 
PI=1 

We speak of IA M) 1’ as the energy contained in the mth normal mode. By (2.4) and 
(2.6), IACrn) 1’ is proportional to 1 c, I* in (2.5), which in turn is proportional to 
i(Ji + w$fi) in (2.4). 

The simple linear transformation from q, p to 4, j makes it very easy to obtain an 
analytic expression for the solution of the harmonic chain. It is equally important, 
however, that the normal-mode amplitudes A (m) also carry qualitative information 
about the motion of the chain. One can compute the normal-mode amplitudes Atm) 
from the initial data, and so one knows whether long waves or short waves are 
predominant in the chain’s motion. Furthermore, various asymptotic calculations 
utilize the normal-mode amplitudes; for long chains a stationary phase approximation 
describes the large-time behavior of the motion, and for weakly nonlinear force laws 
the normal-mode amplitudes couple to each other and change slowly with time. 

Our aim is to analyze the Toda chain, and chains which approximate the Toda 
chain, by a nonlinear version of normal mode theory. The analysis above relied 
heavily on the linearity of the harmonic chain and so it is not obvious how to extend 
it to the Toda chain. In the next section we present an alternate approach to the 
harmonic chain-one which does generalize to the Toda chain. 
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3. ACTION-ANGLE VARIABLES 

It is evident that each of the quantities 

I, = $(jf, + wt,gJ for m = l,..., N (3.1) 

is a constant of the motion. Indeed, we have observed that I, is the square of the mth 
normal mode amplitude A . W) Therefore the phase-space trajectory (q(t), p(t)) must 
lie on the surface S defined by 

z,G?, PI = cl for m = l,..., N, (3.2) 

where Zk is the value of (3.1) determined from the initial conditions. The shape of the 
surface S is thus determined by the values of Z”, and is a geometric reflection of the 
relative sizes of the normal-mode amplitudes A WI) It will be convenient to think . 
geometrically when we analyze the Toda lattice; so, let us develop our geometric 
intuition using the harmonic chain as an example. 

EXAMPLE 1. Suppose Zk = 0 for m = l,..., N. From (3.1) we infer that @m = 
~7, = 0 for m = 1, 2,..., N - 1 and ~7~ = 0. This implies that q is a constant and p is 
zero, i.e., S is a point. This obviously describes a state in which the chain is at rest. 

EXAMPLE 2. Suppose Zk = 0 for m = l,..., N - 1 and Zi # 0. From (3.1) we infer 
that qm = ~7, =0 for m = l,..., N - 1 and Z& # 0. This implies that q increases 
linearly with time, while p is a constant, i.e., S is a straight line. This obviously 
describes a uniform translation of the chain. 

EXAMPLE 3. Suppose Zy # 0 and Pm = 0 for m = 2,..., N. The surface S is the 
ellipse 

which lies in the q, - Ji plane. The area enclosed by the ellipse is 27rZy//o,, a number 
proportional to the square of the normal-mode amplitude A(‘). 

EXAMPLE 4. Suppose Zy # 0, Z$ # 0 and Z”, = 0 for m = 3,..., N. The surface S is 
the two-dimensional torus 

which lies in the four-dimensional span of the gi - pi and g2 - fi2 planes. The cross- 
sectional areas of this torus in the ii - Ji and i2 - A planes are, respectively, 
27rZ@, and 27rZ!/w,; these numbers are proportional to the squares of the normal- 
mode amplitudes A”’ and A(‘). 
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These examples illustrate the following general facts: 

(1) The dimension of the surface S reflects the number of degrees of freedom (the 
number of normal modes having nonzero amplitudes) excited in the chain. The 
maximal dimension of the surface S defined by (3.2) is N (so only N normal modes 
can be excited). 

(2) The surface S is the topological product of up to N - 1 ellipses and 1 line. 
The line disappears if the center of mass does not move. If we ignore the center of 
mass motion, e.g., by using a center of mass coordinate system, then S can be 
considered to be a torus of dimension k where 0 < k < N - 1. 

(3) The cross-sectional areas of the torus are proportional to the squares of the 
amplitudes of the excited normal modes. On a given torus of dimension at least 2, 
there are many different solution trajectories. Each trajectory on S is characterized 
by the same normal-mode amplitudes A cm) but the relative phases with which these , 
normal modes are superimposed are different for different trajectories. 

What we have just described is the geometry of action-angle variables for the 
harmonic chain. Let yi be the intersection of the torus S with the qi - pi plane; yi is a 
curve which encircles S once in one of the N - 1 “independent” directions (remember 
that the center-of-mass motion is being disregarded). The action variable Ji is defined 
by 

(One can check that 

C @j d~j = C Pi dqj + (a perfect differential), 

so that one could equally well use the physical coordinates in (3.3).) Note that qi is 
constant on yj unless j = i, so that 

Using 

we find that 

(3.4) 

The examples above show that (for the harmnoic chain, at least), the Ji are measures 
of the cross-sectional areas of the torus S in the various independent coordinate 
directions. 
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FIG. 1. A schematic drawing of an invariant torus. 

In the action-angle theory of mechanics, one introduces, along with the actions Ji, 
a set of angle coordinates oi, 0 < oi < 2~. The phase-space is filled out by tori Ii = 17. 
The transformation (q, p) -+ (0, J) 

(i) places the point (q, p) on a torus characterized by the values Ji, via 
I,(q, p) = wiJi, and 

(ii) locates the point (q, p) on this torus by specifying the angular coordinates 
19~ (see Fig. 1 for a schematic drawing). 

It is possible to make the transformation canonical, i.e., the equations of motion 
become 

From (2.4), (2.6), (3.5) we find 

so 

e; = wi, J; = 0, 

and it is easily checked that this agrees with the normal-mode solution (2.5). 
For details of this theory, see [ 131. The main point is that the harmonic normal 

modes are obtained by a purely geometric method, relying in no way on the linearity 
of the equations of motion. A standard theorem of mechanics ] 131 gives conditions 
under which this picture applies to more general Hamiltonian systems. 

Let the Hamiltonian equations 

3H 
d=ap,’ 

3H 
PI,=-aq, for n = l,..., N, 
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admit N constants of the motion which are functionally independent and mutually in 
involution (i.e., their Poisson brackets v, 9 1” I = c, (w”la4wl,/w - 
@zn/w(~l,/~P,)) vanish). If a solution of these equations has constants of motion 
Z,(s(O, At)) = C, its trajectory MO, p(f)) winds around the surface S defined by 

Z,(% PI = 1:: for n = l,..., N, 

which can always be viewed as a topological product of circles and lines. If we ignore 
these lines (in our case there is only one line and this line describes a uniform tran- 
slation of the chain), then S is a torus. As before, the dimension of this torus is a 
measure of the number of excited degrees of freedom. For example, if the dimension 
of S is 0, the trajectory is a point and the chain is at rest. If the dimension of S is 1, 
the trajectory is a closed curve and the solution is periodic in time. 

As in the harmonic case, one can now change from the original coordinates (q, p) 
via a canonical transformation to action-angle coordinates (0, J). For the Toda chain, 
two of these coordinates, say 0, and JN, describe the center of mass motion; JN 
characterizes the chain’s total momentum and 0, characterizes the chain’s center of 
mass. The remaining action variables J, ,..., JN- 1 define the torus S, while the angle 
variables 8 I ,..., S,-, provide a coordinate system on S. 

As before, the actions Ji for i= l,..., N- 1 are given by (3.3). In the harmonic 
case, the paths yi were explicitly coordinatized. In a more general Hamiltonian 
system possessing N integrals in involution, the yi are known to exist by abstract 
topological arguments; this is not enough to guarantee that the line integrals (3) can 
actually be evaluated. The theory of the periodic Toda chain [ 141, however, provides: 

(i) an explicit parametrization of the curves yi, so that the integrals (3.3) are 
perfectly concrete, 

(ii) a new set of canonical coordinates pi, di in terms of which the integrand 
JJ j,idgi of (3.3) reduces to 13,@ on yj (J* is constant on yj when i#j). So (3.3) 
simplifies to (3.4), and the computation of the action variables reduces to the 
evaluation of a planar line integral. 

The Toda chain is the first, and still the only, large nonlinear system of physical 
interest for which the theoretical action-angle prescription can be converted into a 
concrete computational problem. The needed integrals (3.4) are still so complex 1141 
that one could not expect to derive much qualitative information from the numerical 
evaluation alone. We show in the next section that the values of the action-variable 
integrals (3.4) may be pictured very simply as areas under portions of a certain curve 
computed easily from the initial conditions. 

Our strategy in this paper will be as follows. From given initial conditions plot the 
graph which, according to the hints above, displays the action variables as areas; 
then relate the actions to the motion of the chain in a way reminiscent of the use of 
harmonic normal modes in the qualitative description of the harmonic chain, It may 
seem that this sort of interpretation of action variables as nonlinear normal-mode 
amplitudes is very obvious, especially when one considers the standard identification 
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of linear normal modes with harmonic action variables; if there were any content to 
the analogy, it should perhaps have been exploited by now. This is not the case, 
simply because the validity of any analogy between nonlinear action variables and 
linear normal-mode amplitudes could not be investigated without an efficient way to 
compute the actions, and this has only recently become available. 

4. PHASE-SPACE GEOMETRY OF THE TODA CHAIN 

Let us now outline how the previously described theory is applied to the Toda 
chain. 

We begin with the equations of motion for the N-mass periodic Toda chain: 

9; = Pn, p:, = F(T + dq,- ,) - F(z- + dq,) for n = l,..., N, (4.1) 

where 

P(x) = $ [exp(+) - 11, 
(4.2) 

40 = qN and 9N+ 1 = 41. 

Here r represents the amount by which each spring is extended from its natural 
length when the chain is at rest. r would be nonzero if the chain is subjected to 
external pressure, which is the case in some applications 171. Define 

1 
a, =-exp 

2 ( 
4, = f in for n = l,..., N (4.3) 

and observe that the equations of motion (4.1) take the form 

4 = an&+ 1 - b,), b; = 2(ai - ai- ,) for n = l,..., N, 

where obviously 

a, = aN and b,,, = b,. 

Crucial for all later development is the following periodic Jacobi matrix: 

(4.4) 

L= 

The entries of L depend on t, but it is a consequence of the equations of motion (4.4), 
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and hence of (4.1), that the eigenvalues J , ,..., 2, of L are independent of t 131. The 
eigenvalues of L, therefore, are constants of the motion for the Toda chain. Observe 
that the quantities 

I, = Trace(Lk) = 5 Ak, for k = l,..., N 
tI=l 

are also constants of the motion; I, is proportional to the total momentum and I, is 
proportional to the total energy. The Ik are functionally independent and are in 
involution [ 151. Therefore, as described in Section 3, the trajectory of each solution 
of the Toda chain (provided we ignore the center of mass motion) winds around some 
torus S in phase-space. 

The key to the success of our method is the following fact. The values of the action 
variables for the Toda chain are related to the shape of the graph of the characteristic 
polynomial of L. Let us now explain the precise connection. 

Imagine given initial conditions qi, p”,. Construct Lo from the corresponding a:, 
b:, and L(t) from the solution a,,(t), b,(t) of (4.4). The eigenvalues A1 ,..., 1, of L(t) 
are independent of time and so equal the eigenvalues of Lo. From the characteristic 
polynomial of L, 

det(U -L) = fi (A - A,), 
It=1 

define a new polynomial A@), called the discriminant of L, by 

IA(A) - 21. 

Since 

fil a, = (--+p (-$))N 

and Z i,..., 1, are independent of time, we conclude that the graph of A is also 
independent of time. The real reason for the introduction of A(A) is found in the 
theory of difference operators with periodic coefficients. For the present exposition, a 
few comments must suffice. It turns out that det@Z - 1) oscillates roughly between 
the values -4 nz=, a,, and 0, often overshooting them but never failing at least to 
reach them. The introduction of A(A) scales and symmetrizes the situation (and the 
choice of “-2” is convention only; any other fixed number would do as well). One 
can verify [ 151 that in the trivial case a, = f, b, = 0, corresponding to an initial 
condition in which the chain is at rest, A@) is a Chebyshev polynomial, assuming its 
extrema i-2 as often as possible, i.e., (deg A) - 1 = N - 1 times. It then turns out that 
any change in a, and/or b, raises maxima about +2, or lowers minima below -2, or 
both. This experience shows that the roots of A(A) = -2 also carry information about 
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the entries of L, even though the actual eigenvalues of L are the roots of d(l) = 2. 
The following result describes the shape of A 19, 15-17 1: 

The Nth degree polynomial A always has N - 1 real extrema, and at these extrema 
[A I > 2. Consequently, the roots of A = 0 are real and have multiplicity 1, while the 
roots of A = k2 are real and have multiplicity 1 or 2. 

Starting from the right, as depicted in Fig. 2, denote the intervals in which 
IA(n)l > 2 by [A,, A,l, [/is, A4j, etc. These intervals, which may degenerate to a 
single point, are called gaps. If AZj+ i #A, we say the jth gap is open or nonzero; 
otherwise we say the jth gap is closed or zero. The most basic information provided 
by A is the number and the arrangement of the open gaps, as we will see in Section 5. 
The size of A for A in a gap will also be important; sometimes we refer to the part of 
A over a gap as a bump. 

THEOREM [ 14-171. The number of degrees of freedom excited by an initial 
condition equals the number of ,open gaps in the graph of A. If there are k < N - 1 
open gaps, the solution trajectory lies on a k-dimensional torus. The value of jth 
action variable (3.4) is 

2 Ati - 
I 

cash - ’ 
71 *Zi+l 

FIG. 2. A discriminant. The values of ld( at its extrema were prescribed (30, lO,O, 5, 10,O) and A 
was reconstructed by Kammerer’s algorithm as described in [9]. 
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Remark. This result is obtained as follows. One performs canonical transfor- 
mations from qn, p,, to conjugate variables defined via spectral properties of L. These 
are: P, ,..., P,- 1 , the eigenvalues of the reduced matrix (AS) in Appendix 2, and 
f, ,-**, f,-, , where fj = -2 cash-‘(lA(C1/)1/2). The loop integral (3.3) then reduces to 

taken around the loop from A, to A,, , and back, cash -I being given determinations 
of opposite sign on the “top” and “bottom” of the circuit. The detailed calculations 
are tedious, and the reader is referred to the original papers. 

The procedure for getting a graphical display of the action variables corresponding 
to a given initial condition should now be fairly clear: 

(1) Compute A from the characteristic polynomial of Lo (there is a simple 
recursion relation which follows from the nearly tri-diagonal structure of Lo, see 
Appendix 2). 

(2) Plot the graph of the modified discriminant: 

m(J) = A(l) if IA@)1 < 2, 

= sign(A(1)) (2 + a cash-’ if 1A(l)l > 2. 

The value of the action variable Ji will be the area under the ith bump of the graph of 
m(4. 

To interpret the figures which follow, keep in mind that we always plot m(A); out 
of habit, and because the whole theory really revolves around A, we refer to the 
graphs as “discriminant plots.” 

We re-emphasize that the action variables will for us play the role of normal-mode 
amplitudes. We want to understand the relation between a given distribution of action 
variables (computed once and for all at the initial time) and the later motion of the 
Toda chain. In the next section, we investigate this correspondence by studying a 
variety of relatively simple examples. 

5. PRACTICE PROBLEMS 

In this section, we take various initial conditions and plot the graph of m, as well 
as the graph of a,, versus t, for n = l,..., N, (see (4.3).) In the process, we will 
discover various rules relating the action variables to the motion of the Toda chain. 
The information which can be extracted from a discriminant plot is of two types: 

(1) Rigorously provable facts, and 
(2) Rules of thumb which are deduced by extrapolation from computer 

experiments. 
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Recall the basic relation (stated in the Theorem at the end of Section 4) between 
the number of open gaps and the number of degrees of freedom. There are other 
rigorous facts, some of which might make matters clear for experts, we will simply 
try to make the various rules plausible with a series of graphs. 

The best known solution of the periodic Toda chain is the traveling wave 
discovered by Toda [ 11. It is expressed explicitly by elliptic functions. As limiting 
cases, it includes the sinusoidal normal modes of the harmonic chain, as well as the 
localized soliton solutions of the infinite Toda chain (see Appendix 1). We begin with 
these extreme cases. 

EXAMPLE 1. Harmonic Normal Modes. The jth harmonic normal mode with 
amplitude a is (see (2.6)) 

p - 
n - 

J- 
G fi sin(kjn + wit), 

J 
(5.1) 

where 

/&!E 
J N’ 

wj = 2 sin(kj/2). 

FIG. 3. Modified discriminant for harmonic normal mode 1, amplitude = 0.04. Note the very small 
second action. 
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,, -5 

FIG. 4. Modified discriminant for harmonic normal mode 2, amplitude = 0.04. 

FIG. 5. Modified discriminant for harmonic normal mode 23, amplitude = 0.04. 

581/45/2-2 



172 FERGlJSON,FLASCHKA,AND MCLAUGHLIN 

This is only an approximate solution of the Toda chain, the approximation getting 
better as the amplitude a + 0. Figures 3-5 show the discriminant computed from the 
initial conditions (5.1) for j = 1, 2,23 for an N = 25 chain; a = .04. 

To plotter accuracy, only one action variable is excited: all but one of the extrema 
of \A 1 equal 2; the excited action variables correspond, respectively, to extrema 1, 2, 
23. One can prove, either from explicit formulas involving elliptic functions, or by 
perturbation about the state where (q, p) = (O,O), that with a small amplitude jth 
harmonic normal mode as an initial condition, the jth gap is opened much more than 
the other gaps. Thus we have: 

RULE 1. A small amplitude harmonic normal mode excites essentially only one 
Toda action variable. Mode j opens the jth gap (from the right). The open gap is 
located inside the interval -1 < A < + 1. 

Remark 1. Recall from Section 2 that the harmonic normal modes run to the left 
for j = l,..., N - [N + 2/2] and to the right for j = [N + 2/2] ,..., N - 1. 

Remark 2. The fact that the open gap is inside I-1, +l 1 is important. We will 
see shortly that gaps corresponding to solitons lie almost entirely outside I-1, +l 1. 
We think of this distinction as a periodic analog of the inverse scattering charac- 
terization of solitons and ringing: solitons are characterized by the roots of A outside 
[- 1, + 11 and ringing is characterized by the amplitude of A inside r-1, +l 1 (see 
[3,4, 181). In the inverse scattering theory, “ringing” refers to all waves that are not 
solitons. For the infinite chain, these turn out to be the dispersive wavetrains familiar 
from the asymptotics of the harmonic chain, with some small-amplitude wavelength 
corrections due to the nonlinearity. 

Remark 3. From the wavenumber formula kj = 2nj/N, one sees that gaps near 
A = f 1 correspond to long wavelength excitations, gaps near A = 0 correspond to 
short wavelength (“optical”) excitations. The center-of-mass motion (mode N) 
requires special consideration and will not be dealt with in this. paper. 

EXAMPLE 2. One Soliton. The infinite Toda chain supports localized traveling 
compressional waves (solitons), given explicitly by Toda’s formula (for r in (4.1) 
equal to 0): 

4ai-, - 1 = sinh*(y) sech*(yn f t sinh(y) + 6). (5.1) 

If the speed and amplitude are large (1~~1 large) the wave is concentrated on just a few 
masses (see Fig. 6 for a picture of this kind of solution). Formula (5.1), taken only 
for n = 1 ,..., N, is not an exact solution of the equations of motion for the periodic 
chain. There are, however, exact solutions which are periodic superpositions of 
solitons (5.1): 

4at-,-l= 2 /3* sech*{a(y-,uk)-/It)-2/3v (5.2) 
h=-cc 
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(see [ le] and Appendix 1). In the limit as P -+ co the parameter /3 + sinh(y) and so 
(5.2) can be considered to be a periodic superposition of (distorted) solitons which 
are described by (5.1). The fact that in general sinh(y) -it/3 can be viewed as compen- 
sating for the interaction between the exponentially small tails of the superimposed 
soliton shapes. In our experiments, we have found that a profile generated by (5.1) 
with Isinh(y)( = 1.1 in an N= 10 chain is so localized that (to plotter accuracy) there 
is no difference between the single sech-squared profile (5.1) and the exact formula 
(5.2) with ,u = 10. 

In the rest of the paper, when we speak of “solitons in the periodic Toda chain,” 
we are being deliberately imprecise: we will have in mind either the exact solution 
(5.2) which looks like, but is not, a superposition of solitons (5.1), or a truncated 
soliton (5.1) which is not an exact traveling wave solution. The difference cannot be 
seen on our plots. 

Now to the graph of A, computed from an initial condition (5.1) with the speed 
sinh(y)/y = 1.5 and N = 25. In Fig. 6 we present the timeline plot of a, for n = l,..., N 
and 0 < t < 50; this plot shows a typical soliton shape. In the graph (Fig. 7) of the 
(modified) discriminant recall that the vertical scale is linear when -2 < A < + 2 and 
logarithmic when IAl > 2. This accounts for the nonpolynomial shape of parts of all 
graphs of the discriminant. The value of the discriminant at its maximum (~10’~) is 
entirely typical, and perhaps surprisingly large for someone who has done inverse 

I.-.-- ..-----.-.--.--------- --------------4 

=5 I 
I 1 

~_ ~~ ~~~~ ~~ ~~_~~~~~~-L 

0 10 20 30 40 M 

FIG. 6. Plot of a, versus I for 1 < n Q 25, one infinite-chain soliton speed 1.5 placed in an N = 25 
periodic chain. The bottom curve is a,. 
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FIG. 7. Modified discriminant for Fig. 6. 

spectral theory with pencil and paper only. The discriminant plot of Fig. 7 suggests 
the next rule: 

RULE 2. A single localized soliton in a periodic Toda chain corresponds to a 
single excited action variable. The one open gap lies outside -1 < A < + 1; it is the 
leftmost (or rightmost) gap of A if the soliton travels to the right (or left). 

Remark 4. Again, one can prove that an exact traveling wave solution (5.2) 
leads to a discriminant with just one bump. We cannot prove that this gap lies 
outside I-1, +ll; this is an asymptotic result. “Asymptotic” means: the result 
becomes exact as the soliton amplitude tends to co. 

Remark 5. If only one action variable is nonzero, the solution trajectory lies on a 
one-dimensional torus, i.e., a closed curve, in phase space. Hence it is necessarily 
time-periodic. 

Remark 6. The exact value of the nonzero action variable is (for a left-running 
soliton) 
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according to the theory summarized in Section 4. Integration by parts yields 

Since /i, is a simple root of A* - 4, the integral converges. Note how steep A is at 
A, ; typically I(112 -ci,)/li, 1 < lo-‘. So from the standpoint of computation, the 
integral (5.3) would be singular if we used only seven decimal places of accuracy in 
the computation of the /ii)s. This makes the numerical evaluation of (5.3) quite 
delicate. Similar integrals occur in formulas for the frequencies lM/8Ji associated 
with the action variables, and in the definition of the &functions which provide the 
exact solutions to the Toda equations [ 15, 161. This is one reason why the exact 
formulas seem to be of little practical use. 

There is one more important item which can be read from the graph of A: the 
soliton speed. Let J be the zero of A between A, and A,. 

RULE 3. The soliton speed is given by 

(5.4) 

(This is an asymptotic result (“asymptotic” as explained in Remark 4); see [ 18 1 for a 
heuristic explanation of (5.4) using the infinite-chain inverse scattering theory.) 

Remark 7. The bigger the bump, the larger and faster the soliton. One precise 
measure of this relation can be derived for the one-soliton solution: Amplitude of 
p,, = two times the width of the gap. 

EXAMPLE 3. One nonzero action variable. If only one action variable is different 
from zero, the solution lies on a one-dimension torus in phase space, and so must be 
time-periodic. We have already seen two illustrations. If the&h action variable is only 
slightly different from zero (all others being zero), the motion is approximately thejth 
linear normal mode. If the first or last action variable is large (all others zero) and 
outside -1 < /l < + 1, the solution is a soliton well localized in the chain. In general, 
if the jth action variable is the only nonzero action variable then the solution is a 
traveling wave described by (5.2) with ,u = max(N/‘, N/N- j}. Such a solution has 
N/,u spatial periods in the N-particle chaih. If y (and hence /I, see Appendix 1) is 
small, this is the jth linear mode. If y is large, the sech-squared profiles in (5.2) 
overlap little, and the solution appears as a sequence of N/,u equally spaced solitons, 
all with the same speed. For intermediate y, the solution is a wave of period N/P, too 
large to be a linear mode but not localized enough to be considered a soliton. 

An example is shown in the discriminant plot of Fig. 8. Gap 4 of seven gaps is 
open; the spatial period of the excitation is 2. The timeline plot (Fig. 9) shows this to 
be a sort of optical mode [ 19, p. 78 ff.]; the springs are alternately stretched and 
compressed, and the wave does not propagate. 
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FIG. 8. Modified discriminant for Toda’s standing wave (wavelength 2) in an N = 8 chain; q = 0.25 
in formula (A.2’), Appendix I. 

FIG. 9. a, versus t plot for Fig. 8. 
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FIG. 10. Modified discriminant for two speed 2 solitons equally spaced in an N = 24 chain. 

FIG. 11. a, versus t plot for Fig. 10. 
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Note that the gap is neither inside nor outside I-1, + 11, and it is indeed not 
possible to think of the solution as linear or soliton-like. There are, however, solitons 
“hidden” in the wave: we return to this in Example 5, after we have discussed 
discriminants of multi-soliton solutions. 

A soliton-like excitation is associated with the discriminant of Fig. 10. Note that 
the gap is entirely outside I-1, tl 1. The solution is near the soliton limit of (5.2), 
and the timeline plot (Fig. 11) shows two localized soliton shapes of equal speed. 

EXAMPLE 4. Two Solitons. How is the presence of two soliton-like pulses 
reflected in the action variables? First, we describe the discriminant plots very 
briefly; then we summarize the rules to be learned from these graphs. 

Case 1. A soliton (5.1) of speed 1.5 is centered on mass 17 and a soliton of 
speed 2 is centered on mass 5 in an N= 25 chain; the solitons are traveling in 
opposite directions. The timeline picture (Fig. 13) is a familiar one. On the plot of the 
discriminant (Fig. 12) there are two nonzero action variables. The larger one on the 
right corresponds to the faster, left-running soliton. 

Case 2. The solitons are centered as in Case 1 except the solitons are now 
traveling in the same direction (Fig. 15). Again the discriminant plot (Fig. 14) shows 
two nonzero action variables. This time the corresponding gaps are both on the right, 
indicating that both solitons run to the left. 

Case 3. If we take two solitons (5.1) of equal speeds, centered on masses 6 and 
18 of an N = 24 chain, there is only one action variable excited. This is the case 
discussed in Example 3, Figs. 10 and 11. If the symmetrical placement of these 
solitons is disturbed, more than one action variable is excited. 

Case 4. The solitons are centered as in Case 3 but now their speeds are 2 and 
1.9. Note in Fig. 16 that action 2 still dominates; the now present action 1 is fairly 
small. This might be expected, if one considers the change in speed from 2 to 1.9 to 
be a small perturbation of the data in Case 3: newly excited action variables should 
remain small. 

Case 5. We perturb the configuration of Case 3 by placing two solitons (5.1), 
both of speed 2, unsymmetrically into an N = 24 chain. The timeline plot (Fig. 17) 
seems to indicate that these solitons propagate through the chain at their original 
separations. We know, however, that the periodic Toda chain does not have a 
traveling-wave solution composed of two unequally spaced peaks, and indeed the 
discriminant plot (Fig. 18) shows an extremely small but nonzero value for action 
variable J, . We surmise that our initial condition consists of two solitons of almost 
equal speeds (a difference of lop2 is an overestimate), plus a small contribution from 
other action variables. The latter are not visible in Fig. 18, but their effect at t = 0 
would be to increase the size of one soliton slightly so that the two initial peaks 
appear to be identical. After a long time, we expect the solitons to have separated 
enough to be symmetrically spaced in the chain. Hence the present case is the same 
as Case 4, with a much smaller speed difference. 
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FIG. 12. Modified discriminant for two colliding solitons (Example 4(i)). 

20 30 

FIG. 13. u, versus t plot for Fig. 12. 

t 
40 50 
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FIG. 14. Modified discriminant for two solitons running in the same direction (Example 4(ii)). 

20 30 

FIG. 15. a, versus r plot for Fig. 14. 

40 50 
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FIG. 16. Modified discriminant for solitons of slightly different speeds (Example 4(iv)). 

t 
0 10 20 30 40 50 

FIG. 17. a, versus t for two infinite-chain, speed 2 solitons placed unsymmetrically into an N = 24 
chain. (Example 4(v)). 
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FIG. 18. Modified discriminant for Fig. 17. 

The plots above show the possibilities for the action variables corresponding to two 
solitons to be quite varied and, to our mind, surprisingly subtle. Let us now 
summarize what can be learned from these examples. 

First, we restate for emphasis: action variables arising from gaps outside -1 < 
1 < + 1 indicate the presence of soliton-like waves. “Soliton-like” is intended to 
underscore that these are solutions of the periodic chain which look like solitons; they 
are not the exact solitons of the infinite chain. 

Next, we want to predict the number of solitons. 

RULE 4. If the kth gap (from the right) is the last nonzero gap to the right of 
A= 1, there are altogether k lefl-running solitons. (Likewise for gaps to the left of 
/I = -1.) 

The solitons may be of greatly different speeds, they may have equal speeds, or 
they may fall into groups, the speeds within each group being equal, or nearly 
equal, etc. There are correspondingly many possibilities for the sizes of the k action 
variables in IA 1 > 1. For us, two extreme cases will be most important: 

RULE 4a. All k action ztariables to the right of 1= +l (or the left of I = -1) are 
nonzero. In that case, there are k solitons of dtflerent speeds. 
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RULE 4b. Only the kth action variable is nonzero. Then the solution is a 
traveling wave made up of k equally spaced solitons traveling at equal speeds (see 
Example 3 ). 

Other cases can be deciphered, if they are simple enough, by analogy with Cases 
l-5 above. Suppose, for example, that the fifth action is large, the second is small, 
and all others are zero. We expect (cf. Case 5) to find five solitons, three of one speed 
and two of a different speed. 

The rule for computing soliton speeds remains the same as for the single-soliton 
case. The predicted speed of the soliton, or group of solitons, associated with the jth 
gap is 

s* = &2-l 

In&II + JI7-i) ’ 

where 1 is the root of the discriminant at the outside edge of thejth gap (“outside” 
means in the direction of increasing [Al). Note on the plots of the discriminant in the 
present example that the discriminant is extremely steep at these roots; the relative 
error I(S - S*)/SI, S being the true speed, will be small as long as the discriminant is 
steep and the roots are not too close to 3, = +l. We should point out that the “true” 
speed of a soliton is usually estimated from a timeline plot or a printout, and so the 
concept of soliton speed is intrinsically not very accurate for the periodic chain. 

FIG. 19. Modified discriminant for Example 5. 
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FIG. 20. a, versus t plot for Fig. 19. 

EXAMPLE 5. Many solitons. In Example 3, we looked at a gap 4 excitation on an 
N = 8 chain (see Figs. 8 and 9). We pointed out that it is not possible to identify 
solitons in the solution. Even though (5.2) exhibits the standing “optical” wave as a 
superposition of sech-squared soliton-like profiles, these are never separated enough 
to be distinguishable. We can, however, give them time to separate, by adding masses 
at rest on both sides of the original N = 8 initial condition. We have added eight 
masses on each side in this computation. 

The change in the discriminant is dramatic (Fig. 19). All 23 action variables are 
excited. Note, first of all, four soliton actions on the outside of /Al = 1. The fourth 
action from each end is significantly larger than the others. The fourth actions alone 
would correspond to trains of four soliton shapes equally spaced and of equal speeds 
(four moving right and four moving left). The smaller values of the three outermost 
actions on each side signify a perturbation rendering the four speeds slightly unequal 
(one can distinguish these on Fig. 20). The large action variables inside -1 < L < + 1 
probably provide interference from all possible Toda modes in order to produce the 
16 masses initially at rest. The flavor of this last statement is strikingly linear in its 
appeal to interference of normal modes, even though the “superposition” of these 
normal modes is decidedly nonlinear. Our guess is based on experience only; there is 
no supporting theory. Compare Example 7 for another appeal to superposition of 
modes. 
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EXAMPLE 6. A sine wave. The initial condition on an N = 25 chain is a large 
amplitude harmonic mode 1 (amplitude l), 

4n = 2ii $ -$ sin@, n + w1 t). 
I 

There are only four action variables of any size, two corresponding to gaps outside 
[-1, +l) and two to inside gaps (Fig. 21). The timeline plot (Fig. 22) shows four 
propagating pulses. We measured their speeds (with a ruler) at the right side of this 
plot, where the pulses are most separated and presumably experience the least 
interaction with each other. Repeated measurements produced the values: 1.06, 1.04, 
0.99, 0.85. A 1132” difference in measurement can produce a 5 % change in speed, so 
these are only crude estimates. Still, it is clear that two pulses are supersonic 
(speed > 1) and two are subsonic (speed < l), conforming with the distribution of 
open gaps in Fig. 21. The soliton speeds computed from the roots of the discriminant 
at the outside edges of the gaps (cf. (5.4)) are 1.06 and 1.025; this is about as good 
an agreement as we have come to expect for such slow solitons. Now we look at the 
interior gaps. We surmise from Figs. 3, 4, and 5 (Example 1) that the small fourth 

-1 

I 

-10 1v 

-20 

FIG. 21. Modified discriminant for amplitude 1 harmonic normal mode 1 on an N = 25 chain 
(Example 6). 
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action variable is a near linear Fourier mode with wavenumber k, = 8~/25. It comes 
from only the second gap inside [ -1, +l 1, and so one might guess that it corresponds 
to wavenumber k, . Superposition of Figs. 3 and 2 1 shows, however, that the fourth 
extremum of the discriminant falls in almost the same place. The correct inter- 
pretation seems to be that gaps 1 and 2, and to some extent 3, have moved outwards 
from their natural closed position (Fig. 3). The small fourth pulse visible on Fig. 22 
appears to be localized, and is therefore more likely to be group packet than a 
wavetrain. Indeed, the group velocity 

k cos - = 0.88 
t i 2 

is very close to the measured velocity of the pulse. (We do not really understand the 
interference mechanism which produces group packets; presumably it is a 
combination of solitons and of the very small, near linear actions, which cannot be 
seen on the discriminant plot.) The velocity of the third pulse in Fig. 22 is not so well 
predicted by the linear theory: cos(kJ2) = 0.93. The third action variable is quite a 
bit larger than the near-linear ones of Example 1; note that the discriminant is 
beginning to develop the asymmetric bump characteristic of soliton actions. We 
deduce from this example of rule of thumb: 

RULE 5. A small action variable corresponding to a gap inside I-1, + 11, will 

FIG. 22. a, versus t plot for Fig. 21. 
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produce a near-linear group packet. The jth action gives a packet with approximate 
speed 

EXAMPLE 7. Impulse initial condition. The initial condition has q,3 = 0, P,~ = -6 
and q,, = pn = 0 for all n # 13. From the discriminant plot (Fig. 23) we would predict 
one left-moving soliton with speed 1.61 determined from the first root of the 
discriminant, I = 3.34. This soliton, of measured speed 1.6, can be seen on the 
timeline plot, Fig. 24. There are also some shapeless ripples, representing the 
cumulative effect of the action variables inside I-1, +1 1. The interior actions are 
quite small, comparable in size to those of the near-linear modes of Example 1 
(Pigs. 3, 4 and 5). In view of Example 6, we would expect the ripples to be essentially 
linear wave packets moving with a group velocity cos(k/2). Their speed is evidently 
less than 1. Since all gaps are open in this case, we do not know how to predict from 
the graph of the discriminant which near-linear actions will cause the visible waves in 
the lattice. The matter could perhaps be resolved by computation of the values of all 
24 action variables, but we have not done this. 

I -40 

FIG. 23. Modified discriminant for impulse initial condition (Example 7). 

501/45/2-3 
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FIG. 24. a, versus t plot for Fig. 23. 

Let us now reflect on what our practice problems have taught us. The first point is 
that the knowledge of the action variables of the Toda chain can give information 
about the physical appearance of the chain. The state at a given time cannot be 
deduced, of course, because the angle variables are not specified, so that the relative 
phases of solitons, etc., are unknown. We can, however, draw some conclusions from 
the discriminant about the types of waves that will emerge in the course of the 
motion. As we said in the introduction, the Toda chain is the only nonlinear example 
known to us for which the mathematically pleasant action variables can be correlated 
with the physical motion. 

The second important point is that the sizes of the action variables are not enough 
to describe the solution. It is necessary to know also where they are located on the 
graph of the discriminant. Compare, for example, the optical mode of Figs. 8 and 9 
with a case in which the fourth gap lies more nearly outside I-1, +l] (Fig. 19). Or 
compare Figs. 3 and 18: in the first, action 1 is small and nearly linear. In the 
second, action 1 is also rather small, but it signifies a slight perturbation of one of 
two equal-speed solitons. The relative sizes of the action variables are as important 
as their individual sizes, and this is a significant change from the situation familiar in 
the harmonic chain. 

The third point to make concerns the applicability of the discriminant method. The 
most clear-cut statements can be made when the solution consists of solitons and 
near-linear waves. We have found the interpretation of the discriminant to be 
generally easy for localized initial data. When the initial data have compact support, 
the periodic Toda chain can be understood by the intuitively appealing inverse 
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scattering method, with its simple distinction between solitons and ringing. We will 
see in the next section that the discriminant’s use is not limited to such situations. We 
can also analyze motions which evolve from nonlocalized initial disturbances, but we 
cannot always tell in advance whether a given initial condition will lead to an 
understandable discriminant. The scope of our method is perhaps best described as 
follows: if the discriminant shows at most one or two large action variables inside 
[- 1, + 11, the general features of the motion can be predicted qualitatively, and often 
quantitatively. With several large interior action variables, the nonlinear superposition 
becomes too complicated to be covered by just a few rules. 

6. WEAKLY NONLINEAR CHAINS 

Physicists often use a simplified model to analyze the motion of a more 
complicated system. In this section we will demonstrate that the Toda chain can be 
used as a simplified model of a class of weakly nonlinear chains. 

Let us begin by considering one of the computational experiments performed by 
Fermi, Pasta and Ulam [ 101. In this experiment they followed the time evolution of a 
32-mass fixed-end chain (2.1-2.2) governed by the quadratic force law 

FQ(X) = -x - fx’. (6.1) 

Starting from the initial condition 

qn = sin(rrn/33), q; = 0 for n = I,..., 32, 

they had hoped to observe by computation how the chain would approach its “ther- 
malized” state, a state in which the chain’s energy is equally shared among its 
various degrees of freedom (see [ 19 1 for a discussion of this circle of ideas). 

To use the discriminant to understand this experiment, we must first recall that 
discriminant analysis applies rigorously only to the periodic Toda chain. Thus we 
must replace the fixed-end conditions of this quadratic chain by equivalent periodic 
boudary conditions, and adjust the parameter /3 in the Toda force law (4.2) so that 
the first three terms in the McLaurin series of the Toda force law agree with (6.1). 
Therefore we consider the time evolution of a 66-mass periodic chain (2.1-2.3), 
governed by the same quadratic force law, starting from the initial condition 

qn = sin(nn/33), q:, =o for n = I,..., 66, 

and compare it with the time evolution of the 66-mass periodic Toda chain (4.1,4.2) 
with /I = -l/2. 

We integrated the equations of motion for the 66-mass periodic quadratic chain. 
Following Fermi, Pasta and Ulam we present in Fig. 25 a plot of the energy 

E, = L&I* + L-h-A* 
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(see Section 2) contained in the Fourier modes with spatial period 66/k for k = l,..., 6. 
At first, we see the expected flow of energy from long wavelength to short wavelength 
Fourier modes. After t = 5,000 seconds, however, this energy flow reverses itself until 
at t = 10,000 seconds the energy is essentially distributed among the Fourier modes 
as it was initially. 

Next, we integrated the equations of motion for the 66-mass periodic Toda chain. 
We present in Fig. 26 a plot of the same energies E, ; observe that at no time do these 
energies differ by more than a few percent from the corresponding energies computed 
from the quadratic chain. Furthermore, the time when the initial energy distribution 
recurs is essentially the same for the two chains. 

From these graphs it would appear that the results obtained by Fermi, Pasta and 
Ulam for this experiment can be explained in terms of the properties of the Toda 
chain. To strengthen this argument we present in Figs. 27 to 30 plots of the modified 
discriminant, evaluated at the indicated times. We construct the discriminant from 
(q(t), p(t)) as though we were dealing with the Toda chain; the motion, however, is 
governed by the quadratic force law. Note that the Toda action variables (the areas 
under the bumps in these plots) are nearly constant; this should be compared with the 
large variation of the energies E,, numbers which are proportional to the action 
variables of the harmonic chain. Note that very few Toda actions are excited; those 

FIG. 25. Normal-mode energies as function of time for FPU experiment (data given in Section 
Time scale: 500 per tic. Energy scale: 0.0005 per tic. 

6). 
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t 

FIG. 26. The initial condition of Fig. 25 run for the Toda chain: plot of harmonic normal mode 
amplitudes. Superposition of Figs. 25 and 26 shows a shift, near the right side, of about one line’s 
thickness. 

FIG. 27. Modified Toda discriminant for the FPU initial condition. 
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FIG. 28. A part of Fig. 27, drawn at greatly enlarged scale for comparison with later times. 

- 
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-1 
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-10 

FIG. 29. Modified To& diocriminant computed from the solution of the quadratic FPU chain when 
mode 2 reaches its maximum (cf. Fig. 25). There is no change from Fig. 27 at this scale. 
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FIG. 30. A part of Fig. 29, drawn at enlarged scale. Figures 28 and 30 are indistinguishable upon 
superposition. 

0 660 

FIG. 31. a, versus f for the initial condition given by Eq. 6.2,O < t < 660, showing initial steepening 
of the sine-wave. 
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t 
4620 5280 

FIG. 32. a, versus t for the initial condition given by Eq. 6.2, 4620 ( t < 5280, showing separation 
of some of the pulses predicted by the discriminant. 

that are lie symmetrically disposed at I = f 1. Figure 28 suggests that one will see a 
left-running soliton, a mixture of soliton-wave packet (that is vague: we imagine it to 
be a part of a conoidal wave, not quite linear-see Appendix l), and one linear wave 
packet. The same type of wave will move toward the right, because of the 
symmetrical picture at A = -1. This is borne out by the timeline plot in Figs. 3 1, 32, 
corresponding to an initial condition from which the A= +l part has been removed 
(see below). 

The fact that the Toda action variables remain nearly constant during the 
integration of the quadratic chain has important ramifications. We must first realize 
that the Toda action variables will in general change with time, since we are not 
integrating the equations of motion for the Toda chain. Recall that each phase point 
(q, p) describing the state of the quadratic chain lies on a (Toda) torus which is 
characterized by the corresponding graph of the discriminant. Therefore we can 
visualize the trajectory of the phase point of the quadratic lattice as a curve winding 
around a torus which is changing with time. If during some interval of time the graph 
of the discriminant changes slowly, we deduce that the torus also changes slowly. Let 
us now suppose that the graph of the discriminant describes a state of the chain that 
is composed of the (nonlinear) superposition of several solitons and near-linear wave 
packets. As the trajectory of the phase point winds around this slowly changing torus 
we would expect it to pass through regions which describe states of the chain where 
each soliton is clearly visible. More generally, if the graph of the discriminant 
changes only slowly over a sufficiently long period of time, then we should be able to 
observe the slowly changing solitons and near-linear wave packets described by the 
discriminant. 
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To illustrate this situation let us again consider the time evolution of the 66-mass 
periodic quadratic chain starting from the initial condition 

qn = + sin(nn/33), q:, = - 01 cos(nn/33) 
2 

for n = l,..., 66, (6.2) 

where 

w, = 2 sin(n/66). 

Recall that if the chain were linear, the initial condition used by Fermi, Pasta and 
Ulam would consist of a left-running and a right-running sinusoidal wave; the initial 
condition above gives rise to the right-running sinusoidal wave. The graph of the 
discriminant of this initial condition, to plotter accuracy, is obtained by imagining the 
open gaps on the right of Fig. 27 to be closed. We find that during the time interval 
0 < t < 10,000 the graph of the discriminant changes slowly; therefore we should 
expect to see the two solitons and several near-linear wave packets predicted by the 
graph of the discriminant. As seen in Fig. 31 we find that the sinusoidal wave does 
indeed propagate to the right while it gradually steepens. In Fig. 32, we see that the 
two solitons and near-linear wave packets, which were superimposed initially, have 
separated. 

A similar experiment on the quadratic chain was performed by Zabusky [ 111. The 
results of this experiment suggested to Zabusky the existence of a new kind of soliton 
in the quadratic chain, the so-called “lattice-soliton.” We argue below that the 
“lattice-soliton” observed by Zabusky could equally well be interpreted as a near 
linear wave packet. Unfortunately we cannot directly use the discriminant to analyze 
Zabusky’s experiment, because we were unable to extract the relevant parameter 
values from his paper. With this apology, let us now present our version of Zabusky’s 
experiment. 

Consider the time evolution of the 200-mass periodic quadratic chain starting from 
the initial condition 

4” =2 ‘,” sin(2xn/200), pn = -2[exp(dq,/2) - 11 for n = l,..., 200. (7.3) 

The plot of the discriminant (Figs. 33 and 34) suggests that one should observe 19 
solitons and 26 near-linear wave packets, the velocity of the fastest soliton being 1.11 
and the group speed of the slowest near-linear wave packet being 0.76. These velocity 
ranges agree reasonably well with those measured by Zabusky (cf. Fig. 4 and accom- 
panying table in [ 111). Furthermore, Zabusky found that his initial sinusoidal wave 
broke up into 46 pulses, of which 20 had speeds greater than 1. We therefore argue 
that, to a reasonable degree of accuracy, the results observed by Zabusky could have 
been predicted by discriminant analysis. In particular, it appears that the “lattice- 
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FIG. 33. Modified Toda discriminant for the Zabusky-type initial condition (7.2). 

0.6 

- A -- 

1.4 

FIG. 34. Part of Fig. 33 drawn at enlarged scale. This permits approximate computation of soliton 
or group-packet speeds (see text). 
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solitons” observed by Zabusky were nothing more than the near-linear wave packets 
of the Toda chain. 

After reading a draft of this paper, Prof. Zabusky pointed out some possible 
defects in our interpretation. He feels that solitons are distinguished by 
(a) undergoing a phase shift upon interaction, and (b) recurring to their initial 
position. Linear wave-packets should interact without’phase shift, and disperse. 

We feel that in an integrable, or near-integrable, chain, recurrence is automatic 
because of the quasiperiodicity of the motion, and does not require or imply soliton 
behavior. Likewise, true dispersion becomes impossible, because the wave-packets are 
constantly forced to interact. We cannot, in our framework, ask whether one of the 
near-linear packets would disperse if it were left alone. As Example 5, Section 5 
shows, adding masses at rest changes the nature of the action variables, and may, for 
all we know, convert an “inside IA1 = 1 bump” to an “outside [Al = 1 bump,” i.e., a 
linear wave to a soliton. 

This leaves the phase shifts to be checked, and we have not done such a 
calculation. The problem is therefore left unresolved. Our interpretation of the L- 
solitons observed by Zabusky as near-linear waves rests on two assumptions: 

(a) Extrapolation of the soliton-ringing distinction of the infinite Toda chain: 
we assume, supported to some extent by the practice problems, that a similar 
distinction prevails in some periodic chain motions. See, for example, the fitting of 
linear group velocity in Example 6, Section 5. 

(b) The infinite Toda chain supports no solitons moving with speed < 1; we 
assume that the same is true of periodic Toda chains, or near-Toda chains. 

These arguments are not proofs, of course, and the “true nature” of Zabusky’s L- 
solitons may be very hard to pin down. They live in a domain where infinite-chain 
concepts do not apply to a periodic chain, nor linear concepts to a nonlinear situation 
nor, perhaps, integrable-chain concepts to a nonintegrable chain. Our discriminant 
rules are largely empirical, and may well only provide parts of the answer. A 
convincing explanation of Zabusky’s experiment is, therefore, still a problem for the 
future. 

7. TODA CHAIN WITH A LIGHT MASS 

Our discussion up to this point has dealt exclusively with the unit-mass Toda 
chain. In this section, we describe some experiments on Toda chains with a mass 
impurity. The springs obey the same force law as before, masses 2 to N are still unit 
masses, while mass 1 (the “impurity”) is lighter or heavier than the rest. 

It is known that the unequal-mass Toda equations are not completely integrable: 
not all trajectories lie on invariant tori, and there are regions in phase space in which 
the motion is extremely erratic (“stochastic”). Computer evidence of stochasticity 
was obtained by Casati and Ford 1201, and a rigorous description of the erratic 
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trajectories at high energy was provided by Bogoyavlenskii 1211. Our experiments 
deal only with fairly regular motions of an unequal-mass chain. This, of course, is 
because we want to adapt, as far as is possible, the discriminant analysis of the 
earlier sections to perturbations of the integrable Toda equations. 

Let us outline our approach. We have explained in Sections 3 and 4 that each 
phase point (q, p) describing a state of the chain lies on a certain torus. The general 
characteristics of this torus, and hence of the physical shape of the chain, can be seen 
from the graph of the discriminant (after the change of variables (q, p) --t (a, b)). It is 
now important to note that the values of the masses do not enter into the change of 
variables, nor into the definition of the discriminant. The fact that all masses are 
equal to unity becomes important only in the dynamics of the chain. For the equal- 
mass chain, a phase point stays on the same Toda torus for all time. This is crucial to 
our analysis, because the discriminant does not tell us where on the torus a given 
phase point lies. So, for example, if the discriminant predicts two solitons and near- 
linear wave packets of certain group speeds it may well take some time until all these 
components have separated and have become distinguishable in the chain itself. The 
implication for the unequal-mass chain is clear. First of all, the equal mass constants 
of motion are no longer constant when impurities are present. Therefore, the 
discriminant will change with time. We can always tell, from the graph of the 
discriminant, on which torus the phase point happens to be at any given time. If, 

FIG. 35. Modified discriminant for Fig. 39 at the initial time, t =O. 
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however, the discriminant (and hence the torus) changes very quickly, we cannot 
deduce anything about the shape of the chain: the components which are “present” in 
the solution at one time may not have a chance to separate and to become iden- 
tifiable before the torus has changed so much that the composition of the solution is 
entirely different. Conversely, if the discriminant changes only gradually over a 
sufficiently long time interval, we may expect to read off from the discriminant some 
significant features of the solution-for example, a soliton of slowly changing 
amplitude, etc. 

Consider, as illustration, the sequence of discriminants shown in Figs. 35-38. A 
single soliton of speed 3, initially centered on an N= 20 chain, is sent toward the 
light mass whose mass is m = 0.1. The discriminant undergoes drastic contortions 
during the time of interaction with the light mass during the time interval 2.5 < 
t < 3.3. After that, there is relatively little change (until the soliton has circled the 
periodic chain and hits the light mass again; this is not shown). The discriminant at 
t = 3.5 shows three solitons; the original one, transmitted with some loss of speed, a 
much smaller reflected one, and a second transmitted one. There is also some 
miscellaneous ringing. The three solitons are visible, to varying degrees, on the 
corresponding time-line plot in Fig. 39. Without the benefit of the discriminant, it 

FIG. 36. Modified discriminant for Fig. 39 at f = 2.65; the interaction started to change the original 
discriminant shape at I = 2.50. 
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1 -40 

FIG. 37. Modified discriminant for Fig. 37 at I = 2.70. Note the extreme change in the three soliton 
actions during the short interval from t = 2.65 to t = 2.70; in particular, the large second action. 

-4 

FIG. 38. Modified discriminant for Fig. 37 at t = 3.50. This picture remains essentially unchanged 
until the next interaction. Note that the size of the reflected soliton action (bump 23) has increased while 
the second transmitted soliton action (bump 2) has decreased in comparison with Fig. 37. 
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FIG. 39. a, versus I plot for a soliton of speed 3 impinging on a light-mass impurity on an N = 20 
chain. The light mass is m = 0.1 (MINV = l/m = 10); its timeline is the bottom one. There is 
considerable oscillation that remains localized at the impurity. 

FIG. 40. Plot of the roots of d(l) = 0 as function of time, for the run of Fig. 39. 
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would not be at all easy to distinguish the second transmitted soliton from near-linear 
wave-packets. Figure 40 summarizes the changes in the discriminant by displaying 
the graphs of the 20 roots of the discriminant as functions of time. One can see there 
the emergence of two of the roots from the interval 1-1, $11; they, of course, 
correspond to the soliton-type bumps seen in Fig. 39. 

We now come to the main observation of this section. One usually studies linear 
chains in terms of Fourier modes, and near-linear chains by following the time- 
evolution of the Fourier amplitudes, which in the linear case were constant and 
uncoupled. If the nonlinearity is small, one generally finds that a dominant mode 
becomes coupled to just a few side-bands; a typical first approximation is to take the 
dominant mode to be coupled to two of its harmonics, and this leads to the familiar 
three-mode interactions. The analog of this procedure for perturbed equal-mass Toda 
chains would be to follow the time-variation and coupling the Toda action variables. 
The discriminant pictures in Figs. 35-38 show some of the mode-coupling mechanism 
in the particular problem studied. The dominant action variable, corresponding to the 
incident soliton, is coupled almost exclusively to two others; it can be seen very 
clearly in Fig. 40 how the “energy” of these modes is transferred and used to excite 
the reflected soliton mode. 

We now have a use for the discriminant at all times, even during the short interval 

t 

.I 
0 I t 

3 4 5 

\ 
-2 c 

i 
FIG. 41. Plot of the roots A,, ,I,, A,, of d(A) = 0 versus time, for light mass l/m = 1.5. 
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when it changes very rapidly. Before and after the soliton-impurity interaction, the 
discriminant accurately reflects the shape of the chain. During the interaction, the 
rapid changes of the discriminant show us the mode-coupling by which new action 
variables are excited. 

Figures 41-42 display the time-evolution of the roots Ai of the discriminant, for 
i = 1, 2, and 20, for other values of the light mass (MINV= I/m); the other 
parameters are the same as in Fig. 37. It is interesting that the mode-coupling 
gyrations become more violent as the light mass decreases. The corresponding plot 
for a heavy impurity is totally different (Fig. 43); one can imagine the heavy mass, 
once set into motion, knocking out several solitons by repeated impulses to the rest of 
the chain. This was already observed in 122,231. 

Our results complement those obtained from soliton perturbation theory. In this 
method (initiated by Kaup [24], see also Kaup and Newell [25]), approximate 
equations for the time-evolution of normally constant scattering data are derived. The 
techniques were used by Yajima [26] to study precisely the soliton-light mass 
interaction. It is a basic feature of the soliton-perturbation theory that the number of 
solitons present in the perturbed solution is assumed to be constant. In the light mass 
problem, it would be postulated that there is, at all times, a single soliton; the pertur- 
bation theory would try to follow its change of speed as caused by the emergence of 

FIG. 42. Plot of the roots A,, A,, A,, of d(l) = 0 versus time, for a light mass I/m = 3. 

581/45/2-4 
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FIG. 43. Plot of all roots of d(i) = 0 for the case of a heavy mass (m = IO). 

ringing (action variables inside [-1, $11). It is clear from our discriminant plots that 
this assumption requires a value of MINV extremely close to 1. On the other hand, 
our pictures suggest that a much better theory, valid over long time intervals, need 
not be more complicated: the interaction process basically involves three solitons, 
and one must “only” derive equations which will describe the transfer of energy from 
the incident one to the other two. The ringing component of the solution should, to a 
good approximation, be completely negligible. 

The creation or destruction of solitons by a perturbation has hardly been treated 
analytically; we only know of some unpublished results of Yajima and of 
McLaughlin and Overman, and neither of these methods is sophisticated enough to 
handle the light mass perturbation. It would be interesting to see the three-mode 
interaction suggested by our computations put on a firmer analytical footing. 

APPENDIX 1 

We collect certain formulas for the traveling-wave solutions of the Toda chain. 
Some of these may be found in the literature [ 1, 161. Others appear to be new and are 
useful for the numerical study of the basic Toda modes. 
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Let 

B(z; q) = f (-1)” qn2 exp(2Mzz), o<q< 1; (A-1) 
“=-cc 

this is a Jacobi &function. The traveling-wave solutions are derived from t9 by the 
formula 

where 

kn - wt 
z, = 

2n 
+6 (6 = constant). 

The wavenumber k takes on one of the values 

k,=Zrrj 
’ N’ 

j = I,..., N, 

64.2) 

and the frequency wj is connected with kj and with the modulus q of the e-function 
(an amplitude parameter) by the nonlinear dispersion relation 

tA.4) 

Two limits of these formulas are of interest: 

Case 1. q + 0 (the harmonic limit). Transformations of the @functions lead to a 
formula equivalent to (A.2), 

Pi&) = -4fJ ,g, & sin(kl/2) cos(Z(kn -at + a)), 

where k is of the form (A.3) and k, w, q are related by 

LO-’ = (2 sin(k/2))-’ - 2 Fr (&) cos(kl), 

(A.27 

(A.4’) 

which is equivalent to (A.4), being obtained from that relation after some 
manipulation. 

As q + 0, we obtain from (A.2’) and (A.4’): 

p,(t) = -2qw2 cos(kn - wt + 6) + O(q’), 

w = 2 sin(k/2) + O(q2); 
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the limit is therefore the harmonic normal mode with a small amplitude measured 
by 9. 

Case 2. q + co (the soliton limit). It is convenient to transform (A.2) and (A.4) 
once again. 

~,,(t)=2asinh(y) 2 {cosh(y)+cosh(2y(N--r)+y-4Qf))-’ 
/=-CC 

(A.2”) 

Re2 = Q-’ + 2 sinhm2(y - 2QZ), 
/=-cc 

(A.4”) 

where the parameters are 

Q = -x2/12 ln(q>l, 

P = w/k, 

Y = Qklr, 

R = Qw/z 

As q -+ 1, Q + 00; let k + 0 with y fixed. Then ~2 -+ sinh(y), and (A.27 reduces to the 
momentum for a single soliton on the infinite chain, 

PnW = 
2 sinh*(y) 

12 -rr,,-=t * 
Y 

APPENDIX 2 

The computations presented in this paper were performed on a Data General 
Eclipse S/230. The algorithms were coded in FORTRAN V using double precision 
floating point arithmetic; this arithmetic offers numbers having 16 decimal digits of 
accuracy and a dynamic range of 10*75. 

Each experiment in this paper involved one or more of the following three steps: 

(1) Integrate the equations of motion, 
(2) plot the discriminant A which corresponds to a prescribed point (q, p) in 

phase-space, and 
(3) compute a point (q, p) in phase-space which corresponds to a prescribed 

discriminant A. 

Let us now describe briefly the computational algorithms used in each of these 
steps. 

The equations of motion (4.4) for the Toda chain were integrated using RKF45 
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1271. A typical integration for the 25mass Toda chain ran from t = 0 to t = 50 with 
the error tolerances used by RKF45 set at 10-6; such an integration took 10 CPU 
seconds. The equations of motion (4.1,6.1) for the quadratic chain were also 
integrated using RKF45. The integration of the 66-mass quadratic chain ran from 
t = 0 to f = 10,560 with the error tolerances used by RKF45 set at 10e9; this 
integration took 10,000 CPU seconds. To save CPU time on these integrations one 
might choose to replace RKF45 by the Bulirsch-Stoer code DIFSUB 1281; note that 
the simplicity of the equations of motion (4.4) would probably make multistep 
methods such as the Adams code 1291 inefficient. 

Plots of the discriminant A were obtained by using a simple recurrence relation to 
compute A(i) given 1. For an N-mass periodic Toda lattice it is known [ 14 ] that 

A@) = Y;‘@> + Y;: ,(A), 

where y(O) and y”’ are the solutions of the difference equation (a, = a,) 

a,-,Y,-,(~)+b,Y,(~)+a,Y”+,(~)=~Yy,(l) 

defined by the initial conditions 

Yo 3 (0) = 1 YI 9 (0) = 0 

Yo 7 (I) = 0 YI (I) & 1. 

The discriminant A for this N-mass chain has exactly N- 1 extrema. 
It can be seen from the plots of the discriminant presented in this paper that the 

typical discriminant graph has very rapid oscillations, very steep segments, and also 
some very broad bumps. If one were to try to resolve all these features by plotting 
A(J) at a very dense mesh of I’s (say 1000 per graph), it would be exceedingly time- 
consuming to obtain each plot. 

To ensure that the computed graph of L reproduces the shape, height, and location 
of each of these extrema accurately, we used the following procedure. First, employ 
the EISPACK routines [30] to compute the eigenvalues ~1~ > p, > ... > flu,-, of the 
tridiagonal matrix 

r b, a, 01 

64.5) 

obtained by deleting the last row and column from the periodic Jacobi matrix L in 
(4.5). Second, use Gerschgorin’s theorem [31] to compute upper and lower bounds 
p. > puN for the eigenvalues of L. It is known 191 that 

(-lY’4,) 2 2 for n = O,..., N. 
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Each interval [,D]+ 1, ,u~ ] therefore contains at most two extrema of A. Having 
localized the extrema, we can get the important characteristics of A by plotting A(A) 
at just 10 or so L’s in each interval I,u~+ i ,,u~ 1. This results in a saving of both time 
and storage. 

Alternatively, one might try to pin down the location of the extrema of A by 
computing the roots of A = 2, i.e., the eigenvalues A, ,..., 1, of L. These numbers 
would also be necessary for the numerical computation of the action variables (cf. 
Section 5). It is not difftcult to compute the eigenvalues of L: if S is the permutation 
matrix that makes the rows 1, 2, 3, 4 ,,.. of SL correspond to the rows 1, N, 2, 
N- l.... of L then 

K = SLS’ 

is a pentadiagonal matrix 1321 that is orthogonally similar to L; therefore the eigen- 
values of L and K are identical. The eigenvalues of K can now be economically deter- 
mined since the EISPACK routines [30] can be used to reduce K to tridiagonal form. 

It would be possible also to use the penta-diagonal matrix K to compute the 
characteristic polynomial of L (and hence A) in a very stable way (using Gauss 
elimination with partial pivoting), avoiding the overflow or underflow sometimes 
associated with the use of the recursion relation defining A. 

The construction of a point (q, p) in phase-space which corresponds to a 
prescribed discriminant is slightly more complicated. We refer the interested reader to 
the discussion presented in [91. 
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